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Introduction

1. Inverse Dynamics

I solve for forces & torques (for control and planning) for a desired trajectories (positions, velocities,
and accelerations)

I often used by Newton-Euler N_E — very efficient, and recursion-based

2. Forward Dynamics

I solves joint accelerations when torques are applied at known positions and velocities
I different from simulation problem with requires motion integration to obtain positions and velocities

I solutions:
I Composite-Rigid-Body Algorithm (CRBA) — can be numerically unstable
I Articulated-Body Algorithm (ABA) — takes advantage of sparsity

3. Hybrid Dynamics (partially both inverse and forward)

I solves for unknown forces and accelerations, given forces at some joints and accelerations at other
joints

NB: all the above methods do not handle kinematic loops

NB: rare for a single algorithm to solve all 3 problems — proposed methods use filtering and smoothing



Dynamics Problems:

Figure 1: QUT Robot Academy



Existing Methods

1. Inverse Dynamics

I Recursive Newton-Euler [42,21]
I others [49, 57]

2. Forward Dynamics

I Composite-Rigid-Body Algorithm (CRBA) [60,20]
I Articulated-Body Algorithm (ABA) [18]

3. Hybrid Dynamics (partially both inverse and forward)

I Articulated-Body Hybrid Dynamics Algorithm [19]

4. Kinematic Loops

I [19]
I Rodriguez [52,51] — filtering and smoothing based, inverse & forward

I applied to loops in [53]
I Rodriguez [54]⇒

I Jain [33] — serial chain dynamics
I Ascher [4] — CRBA & ABA as elimination methods for solving forward dynamics



Contributions

I factor graph as a unified description of classical dynamics algorithms and new algorithms (graph
theory-based⇒ sparse linear systems)

1. unified method for forward, inverse and hybrid for chains & loops

2. factor graph representation for dynamics problems — with better visualization of underlying
equations

3. discover new dynamics equations due to different elimination algorithms



Manipulator Dynamics Review

I Lynch & Park [43] — modern geometric view, exposition and notation
I borrows from Brockett [10], and Murray [48]
I leads to modern differential geometry

Newton-Euler Equations

fb = mv̇b +ωb × mvb
τb = Ibω̇bb +ωb × Ibωb

where m, Ib , vb , and ωb are mass, inertia, linear and angular velocity in the body-frame.
I Geometrically, the equations above are combined by

I wrench Fb = [τb, fb ]T
I twist Vb = [ωb, vb ]T
I skew-symmetric matrics: [ωb ] = RT Ṙ

Fb = GbV̇b −
[
adVb

]T
GbVb

Gb =
[
Ib 0
0 mI

]
,

[
adVb

]
=
[

[ωb ] 0
[vb ] [ωb ]

]



Recursive Dynamics

I Dynamic Constraints:

velocity constraint 0 = Vi − [AdTi,i−1(θi )]Vi−1 −Ai θ̇i
acceleration constraint 0 = V̇i − [AdTi,i−1(θi )]V̇i−1 −Ai θ̈i − [adVi ]Ai θ̇i

force balance 0 = AdT
Ti,i−1(θi )

Fi+1 − Fi + Gi V̇i − [adVi ]
TGiVi

applied torque 0 = FT
i Ai − τi

I transformation between links: Ti,i−1
I associated adjoint transformation: AdTi,i−1 (θi )

I screw axis for joint i : Ai



Dynamic Factor Graphs

I Apply structural dynamic equations:

Vi − [AdTi,i−1(θi )]Vi−1 −Ai θ̇i = 0
V̇i − [AdTi,i−1(θi )]V̇i−1 −Ai θ̈i − [adVi ]Ai θ̇i = 0
AdT

Ti,i−1(θi )
Fi+1 − Fi + Gi V̇i − [adVi ]

TGiVi = 0
FT

i Ai − τi = 0

I Nodes (i.e. Variables):
I Vi — twist
I V̇i — acceleration
I Fi — wrenches
I θi — joint angles
I θ̇i — joint velocity
I θ̇i — joint acceleration
I τi — torques

I NB: (θi , θ̇i ) are assumed to be known in all problems, therefore Vi can be evaluated ahead of time
I Additonally, V0 and Ft are known



Factors



RRR Robot Arm



Inverse Dynamics: θ̇i → τi

I Find joint torques τi , for a given joint accelerations θ̇i

Inverse Dynamics Graph
I skip all the known nodes, i.e. square nodes — but remain available relevant factors



Elimination → (DAG)

I elimination to DAG — Directed Acyclic
Graph

I Order: {τ3 · · · τ1,F1 · · · F3, V̇3 · · · V̇1}

I Matches recursive Newton-Euler

Symbolic Elimination

0 = FT
3 A3 − τ3

τ3 = FT
3 A3



Forward Dynamics: {θ, θ̇, τ} → θ̈

CRBA — Composite Rigid Body Algorithm

ABA — Articulated Body Algorithm



Forward Dynamics: {θ, θ̇, τ} → θ̈

Forward Dynamics Graph

CRBA & ABA equivalent Graphs



Hybrid Dynamics: {θ̈i , τj} → {θ̈j , τi}, j 6= i

I Inverse-dynamics joints: θ̈i → τi
I Forward-dynamics joints: τj → θ̈j

Example
I {θ̈1, τ2, τ3} → {τ1, θ̈2, θ̈3} Featherstone’s Method

I Section VI-A: Hybrid Dynamics



Dynamics for Closed Kinematic Loops

I Redundantly Actuated

Actuated Joints > DOFs

I infinitely many values of τ that produce the
same θ̈

I unique solutions are obtained by:
1. adding constraints, OR
2. applying an optimality criterion — adding more

factors to the graph

I Example
I minimum torque factors
I forward dynamics: overconstrained kinematic

loops, the constraint forces exerted by loop
joints are underdetermined
I use less constrained joints//actuators
I factor graphs: add planar constraint that reduces

unknown forces



Notes

I Opportunities for parallelism (VI-B)— “being sophisticated about variable ordering and the
possible resulting parallelism could yield large dividends. An important step forward in the
understanding and analysis of variable elimination on graphs was the discovery of clique trees, that
make the inherent parallelism in the elimination algorithm explicit”


